Skip to main content
Article thumbnail
Location of Repository

State Estimation of Active Distribution Networks: Comparison Between WLS and Iterated Kalman-Filter Algorithm Integrating PMUs

By S. Sarri, Student Member, M. Paolone and Senior MemberR. Cherkaoui and Senior Member


Abstract—One of the challenging tasks related to the realtime control of Active Distribution Networks (ADNs) is represented by the development of fast (i.e. sub-second) state estimation (SE) processes. As known, the problem of SE of power networks links the measurements performed in the network with a set of non-linear equations representing the links between the network node voltage phasors (i.e. the system states) and measured quantities. The calculation of these voltages is accomplished by the solution of a minimization problem by using, for instance, Weighted Least Squares (WLS) or Kalman filter (KF) methods. The availability of phasor measurement units (PMUs), characterized by high accuracy and able to directly measure node voltage phasors, allows, in principle, a simplification of the SE problem. Within this framework, the paper has two aims. The first is to propose a procedure based on the use of the Iterated KF (IKF) aiming at making achievable, in a straightforward manner, the SE of ADNs integrating PMU measurements. The second goal is to present a sensitivity analysis of the performances of WLS vs IKF methods as a function of the measurements and process covariance matrices. Index Terms—Active distribution networks (ADNs), Kalman filter (KF), iterated Kalman filter (IKF), phasor measurement units (PMUs), state estimation (SE), smart grids. I

Year: 2013
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.