Location of Repository

Investigating the Detection of Adverse Drug Events in a UK General Practice Electronic Health-Care Database

By Jenna Reps, Jan Feyereisl, Jonathan M. Garibaldi, Uwe Aickelin, Jack E. Gibson and Richard B. Hubbard

Abstract

Abstract — Data-mining techniques have frequently been developed for Spontaneous reporting databases. These techniques aim to find adverse drug events accurately and efficiently. Spontaneous reporting databases are prone to missing information, under reporting and incorrect entries. This often results in a detection lag or prevents the detection of some adverse drug events. These limitations do not occur in electronic healthcare databases. In this paper, existing methods developed for spontaneous reporting databases are implemented on both a spontaneous reporting database and a general practice electronic health-care database and compared. The results suggests that the application of existing methods to the general practice database may help find signals that have gone undetected when using the spontaneous reporting system database. In addition the general practice database provides far more supplementary information, that if incorporated in analysis could provide a wealth of information for identifying adverse events more accurately. I

Year: 2013
OAI identifier: oai:CiteSeerX.psu:10.1.1.308.2185
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://ima.ac.uk/papers/reps20... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.