Location of Repository

Hashing with graphs

By Wei Liu, Jun Wang and Shih-fu Chang

Abstract

Hashing is becoming increasingly popular for efficient nearest neighbor search in massive databases. However, learning short codes that yield good search performance is still a challenge. Moreover, in many cases realworld data lives on a low-dimensional manifold, which should be taken into account to capture meaningful nearest neighbors. In this paper, we propose a novel graph-based hashing method which automatically discovers the neighborhood structure inherent in the data to learn appropriate compact codes. To make such an approach computationally feasible, we utilize Anchor Graphs to obtain tractable low-rank adjacency matrices. Our formulation allows constant time hashingof a newdatapointbyextrapolatinggraphLaplacian eigenvectors to eigenfunctions. Finally, we describe a hierarchical threshold learning procedure in which each eigenfunction yields multiple bits, leading to higher search accuracy. Experimental comparison with the other state-of-the-art methods on two large datasets demonstrates the efficacy of the proposed method. 1

Year: 2011
OAI identifier: oai:CiteSeerX.psu:10.1.1.308.120
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://static.googleuserconten... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.