Location of Repository

Effective conductivity of composites of graded spherical particles

By K. W. Yu and G. Q. Gu

Abstract

We have employed the first-principles approach to compute the effective response of composites of graded spherical particles of arbitrary conductivity profiles. We solve the boundary-value problem for the polarizability of the graded particles and obtain the dipole moment as well as the multipole moments. We provide a rigorous proof of an ad hoc approximate method based on the differential effective multipole moment approximation (DEMMA) in which the differential effective dipole approximation (DEDA) is a special case. The method will be applied to an exactly solvable graded profile. We show that DEDA and DEMMA are indeed exact for graded spherical particles

Year: 2008
OAI identifier: oai:CiteSeerX.psu:10.1.1.305.9228
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://arxiv.org/pdf/cond-mat/... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.