Home advantage? Decomposition across the freshwater-estuarine transition zone varies with litter origin and local salinity


Expected increases in the frequency and intensity of storm surges and river flooding may greatly affect the relative salinity of estuarine environments over the coming decades. In this experiment we used detritus from three contrasting environments (marine Fucus vesiculosus; estuarine Spartina anglica; terrestrial Quercus robur) to test the prediction that the decomposition of the different types of litter would be highest in the environment with which they are associated. Patterns of decomposition broadly fitted our prediction: Quercus detritus decomposed more rapidly in freshwater compared with saline conditions while Fucus showed the opposite trend; Spartina showed an intermediate response. Variation in macro-invertebrate assemblages was detected along the salinity gradient but with different patterns between estuaries, suggesting that breakdown rates may be linked in part to local invertebrate assemblages. Nonetheless, our results suggest that perturbation of salinity gradients through climate change could affect the process of litter decomposition and thus alter nutrient cycling in estuarine transition zones. Understanding the vulnerability of estuaries to changes in local abiotic conditions is important given the need to better integrate coastal proceses into a wider management framework at a time when coastlines are increasingly threatened by human activities

Similar works

Full text


Archivio istituzionale della ricerca - Alma Mater Studiorum Università di Bologna

Provided original full text link
oaioai:cris.unibo.it:11585/540910Last time updated on 9/3/2019

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.