Mentoring is an important part of professional development and longer-term learning. The nature of longer-term mentoring contexts means that designing, developing, and testing adaptive learning sys-tems for use in this kind of context would be very costly as it would require substantial amounts of fi-nancial, human, and time resources. Simulation is a cheaper and quicker approach for evaluating the impact of various design and development decisions. Within the Artificial Intelligence in Education (AIED) research community, however, surprisingly little attention has been paid to how to design, de-velop, and use simulations in longer-term learning contexts. The central challenge is that adaptive learning system designers and educational practitioners have limited guidance on what steps to consider when designing simulations for supporting longer-term mentoring system design and development deci-sions. My research work takes as a starting point VanLehn et al.’s [1] introduction to applications of simulated students and Erickson et al.’s [2] suggested approach to creating simulated learning envi-ronments. My dissertation presents four research directions using a real-world longer-term mentoring context, a doctoral program, for illustrative purposes. The first direction outlines a framework for guid-ing system designers as to what factors to consider when building pedagogical simulations, fundamen-tally to answer the question: how can a system designer capture a representation of a target learning context in a pedagogical simulation model? To illustrate the feasibility of this framework, this disserta-tion describes how to build, the SimDoc model, a pedagogical model of a longer-term mentoring learn-ing environment – a doctoral program. The second direction builds on the first, and considers the issue of model fidelity, essentially to answer the question: how can a system designer determine a simulation model’s fidelity to the desired granularity level? This dissertation shows how data from a target learning environment, the research literature, and common sense are combined to achieve SimDoc’s medium fidelity model. The third research direction explores calibration and validation issues to answer the question: how many simulation runs does it take for a practitioner to have confidence in the simulation model’s output? This dissertation describes the steps taken to calibrate and validate the SimDoc model, so its output statistically matches data from the target doctoral program, the one at the university of Saskatchewan. The fourth direction is to demonstrate the applicability of the resulting pedagogical model. This dissertation presents two experiments using SimDoc to illustrate how to explore pedagogi-cal questions concerning personalization strategies and to determine the effectiveness of different men-toring strategies in a target learning context. Overall, this dissertation shows that simulation is an important tool in the AIED system design-ers’ toolkit as AIED moves towards designing, building, and evaluating AIED systems meant to support learners in longer-term learning and mentoring contexts. Simulation allows a system designer to exper-iment with various design and implementation decisions in a cost-effective and timely manner before committing to these decisions in the real world

Similar works

Full text


University of Saskatchewan's Research Archive

Provided a free PDF
oaioai:harvest.usask.ca:10388/12158Last time updated on 9/3/2019View original full text link

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.