Location of Repository

Learning kinematic models for articulated objects

By Jürgen Sturm, Vijay Pradeep, Cyrill Stachniss, Christian Plagemann, Kurt Konolige and Wolfram Burgard

Abstract

Robots operating in home environments must be able to interact with articulated objects such as doors or drawers. Ideally, robots are able to autonomously infer articulation models by observation. In this paper, we present an approach to learn kinematic models by inferring the connectivity of rigid parts and the articulation models for the corresponding links. Our method uses a mixture of parameterized and parameter-free (Gaussian process) representations and finds low-dimensional manifolds that provide the best explanation of the given observations. Our approach has been implemented and evaluated using real data obtained in various realistic home environment settings.

Year: 2009
OAI identifier: oai:CiteSeerX.psu:10.1.1.299.1837
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.informatik.uni-frei... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.