Skip to main content
Article thumbnail
Location of Repository

Redox cycling and increased oxygen utilization contribute to diquat-induced oxidative stress and cytotoxicity in Chinese hamster ovary cells overexpressing NADPH-cytochrome P450 reductase

By Karma C. Fussell, Ronald G. Udasin, Joshua P. Gray, Vladimir Mishin, Peter J.S. Smith, Diane E. Heck and Jeffrey D. Laskin

Abstract

Diquat and paraquat are nonspecific defoliants that induce toxicity in many organs including the lung, liver, kidney, and brain. This toxicity is thought to be due to the generation of reactive oxygen species (ROS). An important pathway leading to ROS production by these compounds is redox cycling. In this study, diquat and paraquat redox cycling was characterized using human recombinant NADPH-cytochrome P450 reductase, rat liver microsomes, and Chinese hamster ovary (CHO) cells constructed to overexpress cytochrome P450 reductase (CHO-OR) and wild-type control cells (CHO-WT). In redox cycling assays with recombinant cytochrome P450 reductase and microsomes, diquat was 10-40 times more effective at generating ROS compared to paraquat (K(M)=1.0 and 44.2?M, respectively, for H(2)O(2) generation by diquat and paraquat using recombinant enzyme, and 15.1 and 178.5?M, respectively for microsomes). In contrast, at saturating concentrations, these compounds showed similar redox cycling activity (V(max)?6.0nmol H(2)O(2)/min/mg protein) for recombinant enzyme and microsomes. Diquat and paraquat also redox cycle in CHO cells. Significantly more activity was evident in CHO-OR cells than in CHO-WT cells. Diquat redox cycling in CHO cells was associated with marked increases in protein carbonyl formation, a marker of protein oxidation, as well as cellular oxygen consumption, measured using oxygen microsensors; greater activity was detected in CHO-OR cells than in CHO-WT cells. These data demonstrate that ROS formation during diquat redox cycling can generate oxidative stress. Enhanced oxygen utilization during redox cycling may reduce intracellular oxygen available for metabolic reactions and contribute to toxicit

Topics: Q1, R1
Year: 2011
OAI identifier: oai:eprints.soton.ac.uk:190493
Provided by: e-Prints Soton
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1016/j.fr... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.