Global ozone depletion and increase of UV radiation caused by pre-industrial tropical volcanic eruptions


Large explosive tropical volcanic eruptions inject high amounts of gases into the stratosphere, where they disperse globally through the large-scale meridional circulation. There is now increasing observational evidence that volcanic halogens can reach the upper troposphere and lower stratosphere. Here, we present the first study that combines measurement-based data of sulfur, chlorine and bromine releases from tropical volcanic eruptions with complex coupled chemistry climate model simulations taking radiative-dynamical-chemical feedbacks into account. Halogen model input parameters represent a size-time-region-wide average for the Central American eruptions over the last 200 ka ensuring a comprehensive perspective. The simulations reveal global, long-lasting impact on the ozone layer affecting atmospheric composition and circulation for a decade. Column ozone drops below 220 DU (ozone hole conditions) in the tropics, Arctic and Antarctica, increasing biologically active UV by 80 to 400%. Our model results could potentially be validated using high-resolution proxies from ice cores and pollen records

Similar works

Full text

oaioai:oceanrep.geomar.de:47182Last time updated on 9/3/2019View original full text link

This paper was published in OceanRep.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.