Article thumbnail

Computing Bits of Algebraic Numbers

By Samir Datta and Rameshwar Pratap

Abstract

We initiate the complexity theoretic study of the problem of computing the bits of (real) algebraic numbers. This extends the work of Yap on computing the bits of transcendental numbers like \pi, in Logspace. Our main result is that computing a bit of a fixed real algebraic number is in C=NC1\subseteq Logspace when the bit position has a verbose (unary) representation and in the counting hierarchy when it has a succinct (binary) representation. Our tools are drawn from elementary analysis and numerical analysis, and include the Newton-Raphson method. The proof of our main result is entirely elementary, preferring to use the elementary Liouville's theorem over the much deeper Roth's theorem for algebraic numbers. We leave the possibility of proving non-trivial lower bounds for the problem of computing the bits of an algebraic number given the bit position in binary, as our main open question. In this direction we show very limited progress by proving a lower bound for rationals

Topics: Computer Science - Computational Complexity
Year: 2011
OAI identifier: oai:arXiv.org:1112.4295

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.