Cyclic orderings and cyclic arboricity of matroids

Abstract

We prove a general result concerning cyclic orderings of the elements of a matroid. For each matroid M, weight functionω:E(M)→N, and positive integer D, the following are equivalent. (1) For allA⊆E(M), we have∑a∈Aω(a)D⋅r(A). (2) There is a map ϕ that assigns to each element e ofE(M)a setϕ(e)ofω(e)cyclically consecutive elements in the cycle(1,2,…,D)so that each set{e|i∈ϕ(e)}, fori=1,…,D, is independent. As a first corollary we obtain the following. For each matroid M such that|E(M)|andr(M)are coprime, the following are equivalent. (1) For all non-emptyA⊆E(M), we have|A|/r(A)|E(M)|/r(M). (2) There is a cyclic permutation ofE(M)in which all sets ofr(M)cyclically consecutive elements are bases of M. A second corollary is that the circular arboricity of a matroid is equal to its fractional arboricity. These results generalise classical results of Edmonds, Nash-Williams and Tutte on covering and packing matroids by bases and graphs by spanning trees

Similar works

Full text

thumbnail-image

LSE Research Online

redirect
Last time updated on 10/02/2012

This paper was published in LSE Research Online.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.