Location of Repository

Let N and D be two matrices over the algebra H ∞ of bounded analytic functions in the disk, or its real counterpart . Suppose that N and D have the same number n of columns. In a generalization of the notion of topological stable rank 2, it is shown that N and D can be approximated (in the operator norm) by two matrices Ñ and , so that the Aryabhatta–Bezout equation admits a solution. This has particular interesting consequences in systems theory. Moreover, in case that N is a square matrix, X can be chosen to be invertible in the case of the algebra H ∞, but not always in the case of

Topics:
QA Mathematics

Publisher: Taylor & Francis

Year: 2010

DOI identifier: 10.1080/03081080902945151

OAI identifier:
oai:eprints.lse.ac.uk:37647

Provided by:
LSE Research Online

Download PDF:To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.