Article thumbnail
Location of Repository

Chains with complete connections and one-dimensional Gibbs measures, 2003

By Roberto Fernández and Grégory Maillard

Abstract

We discuss the relationship between discrete-time processes (chains) and one-dimensional Gibbs measures. We consider finite-alphabet (finite-spin) systems, possibly with a grammar (exclusion rule). We establish conditions for a stochastic process to define a Gibbs measure and vice versa. Our conditions generalize well known equivalence results between ergodic Markov chains and fields, as well as the known Gibbsian character of processes with exponential continuity rate. Our arguments are purely probabilistic; they are based on the study of regular systems of conditional probabilities (specifications). Furthermore, we discuss the equivalence of uniqueness criteria for chains and fields and we establish bounds for the continuity rates of the respective systems of finite-volume conditional probabilities. As an auxiliary result we prove a (re)construction theorem for specifications starting from single-site conditioning, which applies in a more general setting (general spin space, specifications not necessarily Gibbsian).

Year: 2012
OAI identifier: oai:CiteSeerX.psu:10.1.1.239.4593
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://arxiv.org/pdf/math/0305... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.