QUANTIZATION OF NON-UNITARY GEOMETRIC CLASSICAL r-MATRICES

Abstract

Abstract. In this paper we explicitly attach to a geometric classical r-matrix r (not necessarily unitary), a geometric (i.e., set-theoretical) quantum R-matrix R, which is a quantization of r. To accomplish this, we use the language of bijective cocycle 7-tuples, developed by A. Soloviev in the study of set-theoretical quantum R-matrices. Namely, we define a classical version of bijective cocycle 7-tuples, and show that there is a bijection between them and geometric classical r-matrices. Then we show how any classical bijective cocycle 7-tuple can be quantized, and finally use Soloviev’s construction, which turns a (quantum) bijective cocycle 7-tuple into a geometric quantum R-matrix. 1

Similar works

Full text

thumbnail-image
oai:CiteSeerX.psu:10.1.1.238.913Last time updated on 10/22/2014

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.