Skip to main content
Article thumbnail
Location of Repository

Some 0/1 polytopes need exponential size extended formulations

By Thomas Rothvoß


We prove that there are 0/1 polytopes P that do not admit a compact LP formulation. More precisely we show that for every n there is a sets X \subseteq {0,1}^n such that conv(X) must have extension complexity at least 2^{n/2 * (1-o(1))}. In other words, every polyhedron Q that can be linearly projected on conv(X) must have exponentially many facets. In fact, the same result also applies if conv(X) is restricted to be a matroid polytope. Conditioning on NP not contained in P_{/poly}, our result rules out the existence of any compact formulation for the TSP polytope, even if the formulation may contain arbitrary real numbers

Topics: Mathematics - Combinatorics, Computer Science - Computational Complexity, Computer Science - Discrete Mathematics, 52B11, G.1.6
Year: 2011
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.