Skip to main content
Article thumbnail
Location of Repository

Gaussian model of explosive percolation in three and higher dimensions

By K. J. Schrenk, N. A. M. Araújo and H. J. Herrmann

Abstract

The Gaussian model of discontinuous percolation, recently introduced by Ara\'ujo and Herrmann [Phys. Rev. Lett., 105, 035701 (2010)], is numerically investigated in three dimensions, disclosing a discontinuous transition. For the simple-cubic lattice, in the thermodynamic limit, we report a finite jump of the order parameter, $J=0.415 \pm 0.005$. The largest cluster at the threshold is compact, but its external perimeter is fractal with fractal dimension $d_A = 2.5 \pm 0.2$. The study is extended to hypercubic lattices up to six dimensions and to the mean-field limit (infinite dimension). We find that, in all considered dimensions, the percolation transition is discontinuous. The value of the jump in the order parameter, the maximum of the second moment, and the percolation threshold are analyzed, revealing interesting features of the transition and corroborating its discontinuous nature in all considered dimensions. We also show that the fractal dimension of the external perimeter, for any dimension, is consistent with the one from bridge percolation and establish a lower bound for the percolation threshold of discontinuous models with finite number of clusters at the threshold

Topics: Condensed Matter - Statistical Mechanics, Physics - Computational Physics
Year: 2011
DOI identifier: 10.1103/PhysRevE.84.041136
OAI identifier: oai:arXiv.org:1104.5376
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://arxiv.org/abs/1104.5376 (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.