Skip to main content
Article thumbnail
Location of Repository

QoS-Aware Base-Station Selections for Distributed MIMO Links in Broadband Wireless Networks

By Qinghe Du and Xi Zhang


We propose the QoS-aware BS-selection schemes for the distributed wireless MIMO links, which aim at minimizing the BS usages and reducing the interfering range, while satisfying diverse statistical delay-QoS constraints characterized by the delay-bound violation probability and the effective capacity technique. In particular, based on the channel state information (CSI) and QoS requirements, a subset of BS with variable cardinality for the distributed MIMO transmission is dynamically selected, where the selections are controlled by a central server. For the single-user scenario, we develop two optimization frameworks, respectively, to derive the efficient BS-selection schemes and the corresponding resource allocation algorithms. One framework uses the incremental BS-selection and time-sharing (IBS-TS) strategies, and the other employs the ordered-gain based BS-selection and probabilistic transmissions (OGBS-PT). The IBS-TS framework can yield better performance, while the scheme developed under the OGBS-PT framework is easier to implement. For the multi-user scenario, we propose the optimization framework applying the priority BS-selection, block-diagonalization precoding, and probabilistic transmission (PBS-BD-PT) techniques. We also propose the optimization framework applying the priority BS-selection, time-division-multiple-access, and probabilistic transmission (PBS-TDMA-PT) techniques. We derive the optimal transmission schemes for all the aforementioned frameworks, respectively. Also conducted is a set of simulation evaluations which compare our proposed schemes with several baseline schemes and show the impact of the delay-QoS requirements, transmit power, and traffic loads on the performances of BS selections for distributed MIMO systems

Topics: Computer Science - Information Theory
Year: 2011
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.