Skip to main content
Article thumbnail
Location of Repository

Nonparametric Reconstruction of the Dark Energy Equation of State from Diverse Data Sets

By Tracy Holsclaw, Ujjaini Alam, Bruno Sanso, Herbie Lee, Katrin Heitmann, Salman Habib and David Higdon

Abstract

The cause of the accelerated expansion of the Universe poses one of the most fundamental questions in physics today. In the absence of a compelling theory to explain the observations, a first task is to develop a robust phenomenology. If the acceleration is driven by some form of dark energy, then, the phenomenology is determined by the dark energy equation of state w. A major aim of ongoing and upcoming cosmological surveys is to measure w and its time dependence at high accuracy. Since w(z) is not directly accessible to measurement, powerful reconstruction methods are needed to extract it reliably from observations. We have recently introduced a new reconstruction method for w(z) based on Gaussian process modeling. This method can capture nontrivial time-dependences in w(z) and, most importantly, it yields controlled and unbaised error estimates. In this paper we extend the method to include a diverse set of measurements: baryon acoustic oscillations, cosmic microwave background measurements, and supernova data. We analyze currently available data sets and present the resulting constraints on w(z), finding that current observations are in very good agreement with a cosmological constant. In addition we explore how well our method captures nontrivial behavior of w(z) by analyzing simulated data assuming high-quality observations from future surveys. We find that the baryon acoustic oscillation measurements by themselves already lead to remarkably good reconstruction results and that the combination of different high-quality probes allows us to reconstruct w(z) very reliably with small error bounds.Comment: 14 pages, 9 figures, 3 table

Topics: Astrophysics - Cosmology and Nongalactic Astrophysics
Year: 2011
DOI identifier: 10.1103/PhysRevD.84.083501
OAI identifier: oai:arXiv.org:1104.2041
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://arxiv.org/abs/1104.2041 (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.