Skip to main content
Article thumbnail
Location of Repository

Cosmography with strong lensing of LISA gravitational wave sources

By M. Sereno, Ph. Jetzer, A. Sesana and M. Volonteri

Abstract

LISA might detect gravitational waves from mergers of massive black hole binaries strongly lensed by intervening galaxies (Sereno et al. 2010). The detection of multiple gravitational lensing events would provide a new tool for cosmography. Constraints on cosmological parameters could be placed by exploiting either lensing statistics of strongly lensed sources or time delay measurements of lensed gravitational wave signals. These lensing methods do not need the measurement of the redshifts of the sources and the identification of their electromagnetic counterparts. They would extend cosmological probes to redshift z <= 10 and are then complementary to other lower or higher redshift tests, such as type Ia supernovae or cosmic microwave background. The accuracy of lensing tests strongly depends on the formation history of the merging binaries, and the related number of total detectable multiple images. Lensing amplification might also help to find the host galaxies. Any measurement of the source redshifts would allow to exploit the distance-redshift test in combination with lensing methods. Time-delay analyses might measure the Hubble parameter H_0 with accuracy of >= 10 km s^{-1}Mpc^{-1}. With prior knowledge of H_0, lensing statistics and time delays might constrain the dark matter density (delta Omega_M >= 0.08, due to parameter degeneracy). Inclusion of our methods with other available orthogonal techniques might significantly reduce the uncertainty contours for Omega_M and the dark energy equation of state.Comment: 10 pages, 10 figures, in press on MNRA

Topics: Astrophysics - Cosmology and Nongalactic Astrophysics, General Relativity and Quantum Cosmology
Year: 2011
DOI identifier: 10.1111/j.1365-2966.2011.18895.x
OAI identifier: oai:arXiv.org:1104.1977
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://arxiv.org/abs/1104.1977 (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.