Article thumbnail
Location of Repository

Learning to Reach Agreement in a Continuous Ultimatum Game Steven

By De Jong, Simon Uyttendaele and Karl Tuyls


It is well-known that acting in an individually rational manner, according to the principles of classical game theory, may lead to sub-optimal solutions in a class of problems named social dilemmas. In contrast, humans generally do not have much difficulty with social dilemmas, as they are able to balance personal benefit and group benefit. As agents in multi-agent systems are regularly confronted with social dilemmas, for instance in tasks such as resource allocation, these agents may benefit from the inclusion of mechanisms thought to facilitate human fairness. Although many of such mechanisms have already been implemented in a multi-agent systems context, their application is usually limited to rather abstract social dilemmas with a discrete set of available strategies (usually two). Given that many real-world examples of social dilemmas are actually continuous in nature, we extend this previous work to more general dilemmas, in which agents operate in a continuous strategy space. The social dilemma under study here is the well-known Ultimatum Game, in which an optimal solution is achieved if agents agree on a common strategy. We investigate whether a scale-free interaction network facilitates agents to reach agreement, especially in the presence of fixed-strategy agents that represent a desired (e.g. human) outcome. Moreover, we study the influenc

Year: 2012
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.