Skip to main content
Article thumbnail
Location of Repository

The Probability Distribution for Non-Gaussianity Estimators

By Tristan L. Smith, Marc Kamionkowski and Benjamin D. Wandelt


One of the principle efforts in cosmic microwave background (CMB) research is measurement of the parameter fnl that quantifies the departure from Gaussianity in a large class of non-minimal inflationary (and other) models. Estimators for fnl are composed of a sum of products of the temperatures in three different pixels in the CMB map. Since the number ~Npix^2 of terms in this sum exceeds the number Npix of measurements, these ~Npix^2 terms cannot be statistically independent. Therefore, the central-limit theorem does not necessarily apply, and the probability distribution function (PDF) for the fnl estimator does not necessarily approach a Gaussian distribution for N_pix >> 1. Although the variance of the estimators is known, the significance of a measurement of fnl depends on knowledge of the full shape of its PDF. Here we use Monte Carlo realizations of CMB maps to determine the PDF for two minimum-variance estimators: the standard estimator, constructed under the null hypothesis (fnl=0), and an improved estimator with a smaller variance for |fnl| > 0. While the PDF for the null-hypothesis estimator is very nearly Gaussian when the true value of fnl is zero, the PDF becomes significantly non-Gaussian when |fnl| > 0. In this case we find that the PDF for the null-hypothesis estimator fnl_hat is skewed, with a long non-Gaussian tail at fnl_hat > |fnl| and less probability at fnl_hat < |fnl| than in the Gaussian case. We provide an analytic fit to these PDFs. On the other hand, we find that the PDF for the improved estimator is nearly Gaussian for observationally allowed values of fnl. We discuss briefly the implications for trispectrum (and other higher-order correlation) estimators.Comment: 10 pages, 6 figures, comments welcom

Topics: Astrophysics - Cosmology and Nongalactic Astrophysics
Year: 2011
DOI identifier: 10.1103/PhysRevD.84.063013
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.