Skip to main content
Article thumbnail
Location of Repository

Probabilistic well-posedness for the cubic wave equation

By Nicolas Burq and Nikolay Tzvetkov

Abstract

The purpose of this article is to introduce for dispersive partial differential equations with random initial data, the notion of well-posedness (in the Hadamard-probabilistic sense). We restrict the study to one of the simplest examples of such equations: the periodic cubic semi-linear wave equation. Our contributions in this work are twofold: first we break the algebraic rigidity involved in previous works and allow much more general randomizations (general infinite product measures v.s. Gibbs measures), and second, we show that the flow that we are able to construct enjoys very nice dynamical properties, including a new notion of probabilistic continuity

Topics: Mathematics - Analysis of PDEs
Year: 2011
OAI identifier: oai:arXiv.org:1103.2222
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://arxiv.org/abs/1103.2222 (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.