Skip to main content
Article thumbnail
Location of Repository

Splitting vector bundles and A^1-fundamental groups of higher dimensional varieties

By Aravind Asok


We study aspects of the A^1-homotopy classification problem in dimensions >= 3 and, to this end, we investigate the problem of computing A^1-homotopy groups of some A^1-connected smooth varieties of dimension >=. Using these computations, we construct pairs of A^1-connected smooth proper varieties all of whose A^1-homotopy groups are abstractly isomorphic, yet which are not A^1-weakly equivalent. The examples come from pairs of Zariski locally trivial projective space bundles over projective spaces and are of the smallest possible dimension. Projectivizations of vector bundles give rise to A^1-fiber sequences, and when the base of the fibration is an A^1-connected smooth variety, the associated long exact sequence of A^1-homotopy groups can be analyzed in detail. In the case of the projectivization of a rank 2 vector bundle, the structure of the A^1-fundamental group depends on the splitting behavior of the vector bundle via a certain obstruction class. For projective bundles of vector bundles of rank >=, the A^1-fundamental group is insensitive to the splitting behavior of the vector bundle, but the structure of higher A^1-homotopy groups is influenced by an appropriately defined higher obstruction class.Comment: 38 pages; Significantly revised, comments still welcom

Topics: Mathematics - Algebraic Geometry, Mathematics - Algebraic Topology, Mathematics - K-Theory and Homology, 14F35, 14F43, 14J10, 57R80
Year: 2012
DOI identifier: 10.1112/jtopol/jts034
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.