Skip to main content
Article thumbnail
Location of Repository

Fibered knots and potential counterexamples to the Property 2R and Slice-Ribbon Conjectures

By Robert E. Gompf, Martin Scharlemann and Abigail Thompson

Abstract

If there are any 2-component counterexamples to the Generalized Property R Conjecture, a least genus component of all such counterexamples cannot be a fibered knot. Furthermore, the monodromy of a fibered component of any such counterexample has unexpected restrictions. The simplest plausible counterexample to the Generalized Property R Conjecture could be a 2-component link containing the square knot. We characterize all two-component links that contain the square knot and which surger to (S^1 x S^2) # (S^1 x S^2). We exhibit a family of such links that are probably counterexamples to Generalized Property R. These links can be used to generate slice knots that are not known to be ribbon.Comment: Combines and expands arXiv:0908.2795 and arXiv:0901.2319 into the version published in Geometry and Topolog

Topics: Mathematics - Geometric Topology, 57M25, 57N13
Year: 2011
OAI identifier: oai:arXiv.org:1103.1601
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://arxiv.org/abs/1103.1601 (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.