Skip to main content
Article thumbnail
Location of Repository

Ergodic Transport Theory, periodic maximizing probabilities and the twist condition

By G. Contreras, A. O. Lopes and E. R. Oliveira


The present paper is a follow up of another one by A. O. Lopes, E. Oliveira and P. Thieullen which analyze ergodic transport problems. Our main focus will a more precise analysis of case where the maximizing probability is unique and is also a periodic orbit. Consider the shift T acting on the Bernoulli space \Sigma={1, 2, 3,.., d}^\mathbb{N} $ and $A:\Sigma \to \mathbb{R} a Holder potential. Denote m(A)=max_{\nu is an invariant probability for T} \int A(x) \; d\nu(x) and, \mu_{\infty,A}, any probability which attains the maximum value. We assume this probability is unique (a generic property). We denote \T the bilateral shift. For a given potential Holder A:\Sigma \to \mathbb{R}, we say that a Holder continuous function W: \hat{\Sigma} \to \mathbb{R} is a involution kernel for A, if there is a Holder function A^*:\Sigma \to \mathbb{R}, such that, A^*(w)= A\circ \T^{-1}(w,x)+ W \circ \T^{-1}(w,x) - W(w,x). We say that A^* is a dual potential of A. It is true that m(A)=m(A^*). We denote by V the calibrated subaction for A, and, V^* the one for A^*. We denote by I^* the deviation function for the family of Gibbs states for \beta A, when \beta \to \infty. For each x we get one (more than one) w_x such attains the supremum above. That is, solutions of V(x) = W(w_x,x) - V^* (w_x)- I^*(w_x). A pair of the form (x,w_x) is called an optimal pair. If \T is the shift acting on (x,w) \in {1, 2, 3,.., d}^\mathbb{Z}, then, the image by \T^{-1} of an optimal pair is also an optimal pair. Theorem - Generically, in the set of Holder potentials A that satisfy (i) the twist condition, (ii) uniqueness of maximizing probability which is supported in a periodic orbit, the set of possible optimal w_x, when x covers the all range of possible elements x in \in \Sigma, is finite

Topics: Mathematics - Dynamical Systems, Condensed Matter - Statistical Mechanics, Mathematics - Optimization and Control, Mathematics - Probability, 37A05, 37A35, 37A60, 37D35, 49K27, 49Q20, 82B05, 90C05, 90C50
Year: 2013
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.