Article thumbnail

A Framework for Optimizing Paper Matching

By Laurent Charlin, Richard Zemel and Craig Boutilier


At the heart of many scientific conferences is the problem of matching submitted papers to suitable reviewers. Arriving at a good assignment is a major and important challenge for any conference organizer. In this paper we propose a framework to optimize paper-to-reviewer assignments. Our framework uses suitability scores to measure pairwise affinity between papers and reviewers. We show how learning can be used to infer suitability scores from a small set of provided scores, thereby reducing the burden on reviewers and organizers. We frame the assignment problem as an integer program and propose several variations for the paper-to-reviewer matching domain. We also explore how learning and matching interact. Experiments on two conference data sets examine the performance of several learning methods as well as the effectiveness of the matching formulations.

Year: 2012
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles