Skip to main content
Article thumbnail
Location of Repository

Lattice Induced Resonances in One Dimensional Bosonic Systems

By Javier von Stecher, Victor Gurarie, Leo Radzihovsky and Ana Maria Rey


We study the resonant effects produced when a Feshbach dimer crosses a scattering continuum band of atoms in an optical lattice. We numerically obtain the exact spectrum of two particles in a one-dimensional lattice and develop an effective atom-dimer Hamiltonian that accurately captures resonant effects. The lattice-induced resonances lead to the formation of bound states simultaneously above and below the scattering continuum and significantly modify the curvature of the dimer dispersion relation. The nature of the atom-dimer coupling depends strongly on the parity of the dimer state leading to a novel coupling in the case of negative parity dimers. From the exact solutions we extract the dimer Wannier function from which we quantitatively determine the effective Hamiltonian parameters for a many-body description.Comment: 4 pages, 3 figures, published versio

Topics: Condensed Matter - Quantum Gases
Year: 2011
DOI identifier: 10.1103/PhysRevLett.106.235301
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.