Skip to main content
Article thumbnail
Location of Repository

Ionization structure and Fe K$\alpha$ energy for irradiated accretion disks

By Xin-Lin Zhou, Yong-Heng Zhao and Roberto Soria


We study the radial ionization structure at the surface of an X-ray illuminated accretion disk. We plot the expected iron K$\alpha$ line energy as a function of the Eddington ratio and of the distance of the emitting matter from the central source, for a non-rotating and a maximally-rotating black hole. We compare the predicted disk line energies with those measured in an archival sample of active galactic nuclei observed with {\it Chandra}, {\it XMM-Newton} and {\it Suzaku}, and discuss whether the line energies are consistent with the radial distances inferred from reverberation studies. We also suggest using rapidly-variable iron K$\alpha$ lines to estimate the viscosity parameter of an accretion disk. There is a forbidden region in the line energy versus Eddington ratio plane, at low Eddington ratios, where an accretion disk cannot produce highly-ionized iron K$\alpha$ lines. If such emission is observed in low-Eddington-ratio sources, it is either coming from a highly-ionized outflow, or is a blue-shifted component from fast-moving neutral matter.Comment: 5 pages, 2 figures, accepted by MNRA

Topics: Astrophysics - High Energy Astrophysical Phenomena
Year: 2011
DOI identifier: 10.1111/j.1745-3933.2011.01033.x
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.