Article thumbnail

ESITheErwinSchrodingerInternational InstituteforMathematicalPhysics Pasteurgasse6/7 A-1090Wien,Austria

By Direnceschrodingeroperators Onthepointspectrumof, Alexanderfedotov Vladimirbuslaev and Where Inthisnoteweconsidertheequation H (x)=e Introduction

Abstract

hisapositivenumber,andvisanalmosteverywherenitemeasurablefunction periodicwithaperiodh0.Thisfunctioncanbecomplexvalued.Weprove (H)(x)=(x+h)+(x);x2R; (x?h)+v(x)(x); (1.2) (1.1) anordinarydierentialequationwithperiodiccoecients,onecallsitssolution translationbytheperiod: aBlochsolutionifitisinvariantuptoaconstantfactorwithrespecttothe ThecentralpointintheproofisrelatedtothenotionofBlochsolutions.For Theorem1.1.Equation(1.1)hasnosolutionsfromL2(R). Forequation(1.1) udependingh-periodicallyonx,u(x+h)=u(x): iscalledaBlochsolutionifitsatises(1.3)withacoecient (x+h0)=u(x);x2R: (1.3) TheworkwaspartiallysupportedbygrantINTAS-93-1815. 1 TypesetbyAMS-TEX dimensionalmodulovertheringofh-periodicfunctions.Theideaoftheproof istoshowthatifthereisanL2(R)-solutionof(1.1),thenthisequationhasalsoa idealeadstoanimmediateproofoftheanalogoustheoremfortheone-dimensional dierentialequationwithperiodiccoecients.Inthecaseunderconsidirationthe Thisdenitionisnaturalsincethesetofsolutionsofequation(1.1)isatwo- coecientufromthedenitionofBlochsolutionsdependsonx,andtheproof BlochsolutionbelongingtoL2(R),andtocheckthatthisisimpossible.Thesame andfromtheknowntheoremsonthestructureofthediscretespectrumoftheer- oftheproblemintermsofthecorrespondingproblemsontheinvariantlattices, mentofthetheoremcanbeeasilyderivedfromthedirect-integraldecomposition becomesalittlemorecomplicated. completelyuselesssinceitisquitedirectandelementary. godicoperators,see[PF].Buteveninthiscasethepresentproof,probably,isnot Inthecasewherevis,forexample,aboundedreal-valuedfunction,thestate

Year: 2012
OAI identifier: oai:CiteSeerX.psu:10.1.1.217.6644
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.esi.ac.at/preprints... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.