Asymmetric Twin Representation: the Transfer Matrix Symmetry


The symmetry of the Hamiltonian describing the asymmetric twin model was partially studied in earlier works, and our aim here is to generalize these results for the open transfer matrix. In this spirit we first prove, that the so called boundary quantum algebra provides a symmetry for any generic – independent of the choice of model – open transfer matrix with a trivial left boundary. In addition it is shown that the boundary quantum algebra is the centralizer of the B type Hecke algebra. We then focus on the asymmetric twin representation of the boundary Temperley–Lieb algebra. More precisely, by exploiting exchange relations dictated by the reflection equation we show that the transfer matrix with trivial boundary conditions enjoys the recognized Uq(sl2) ⊗ Ui(sl2) symmetry. When a nondiagonal boundary is implemented the symmetry as expected is reduced, however again certain familiar boundary non-local charges turn out to commute with the corresponding transfer matrix

Similar works

Full text

oai:CiteSeerX.psu: time updated on 10/22/2014

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.