In this paper we study the complex dynamics of predator-prey systems with nonmonotonic functional response and harvesting. When the harvesting is constant-yield for prey, it is shown that various kinds of bifurcations, such as saddle-node bifurcation, degenerate Hopf bifurcation, and Bogdanov-Takens bifurcation, occur in the model as parameters vary. The existence of two limit cycles and a homoclinic loop is established by numerical simulations. When the harvesting is seasonal for both species, sufficient conditions for the existence of an asymptotically stable periodic solution and bifurcation of a stable periodic orbit into a stable invariant torus of the model are given. Numerical simulations are carried out to demonstrate the existence of bifurcation of a stable periodic orbit into an invariant torus and transition from invariant tori to periodic solutions, respectively, as the amplitude of seasonal harvesting increases
To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.