We analyze tests for long-run abnormal returns and document that two approaches yield well-specified test statistics in random samples. The first uses a traditional event study framework and buy-and-hold abnormal returns calculated using carefully constructed reference portfolios. Inference is based on either a skewnessadjusted t-statistic or the empirically generated distribution of long-run abnormal returns. The second approach is based on calculation of mean monthly abnormal returns using calendar-time portfolios and a time-series t-statistic. Though both approaches perform well in random samples, misspecification in nonrandom samples is pervasive. Thus, analysis of long-run abnormal returns is treacherous. COMMONLY USED METHODS TO TEST for long-run abnormal stock returns yield misspecified test statistics, as documented by Barber and Lyon ~1997a! and Kothari and Warner ~1997!. 1 Simulations reveal that empirical rejection levels routinely exceed theoretical rejection levels in these tests. In combination, these papers highlight three causes for this misspecification. First, th
To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.