Skip to main content
Article thumbnail
Location of Repository

Fusion Classifier for Open-Set Face Recognition with Pose Variations

By Gee-sern Jison Hsu

Abstract

Abstract—A fusion classifier composed of two modules, one made by a hidden Markov model (HMM) and the other by a support vector machine (SVM), is proposed to recognize faces with pose variations in open-set recognition settings. The HMM module captures the evolution of facial features across a subject’s face using the subject’s facial images only, without referencing to the faces of others. Because of the captured evolutionary process of facial features, the HMM module retains certain robustness against pose variations, yielding low false rejection rates (FRR) for recognizing faces across poses. This is, however, on the price of poor false acceptance rates (FAR) when recognizing other faces because it is built upon withinclass samples only. The SVM module in the proposed model is developed following a special design able to substantially diminish the FAR and further lower down the FRR. The proposed fusion classifier has been evaluated in performance using the CMU PIE database, and proven effective for open-set face recognition with pose variations. Experiments have also shown that it outperforms the face classifier made by HMM or SVM alone. Keywords—Face recognition, open-set identification, hidden Markov model, support vector machines. I

Year: 2011
OAI identifier: oai:CiteSeerX.psu:10.1.1.193.5428
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.waset.org/journals/... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.