Location of Repository

Mining Dense Periodic Patterns in Time Series Data

By Chang Sheng, Wynne Hsu and Mong Li Lee

Abstract

Existing techniques to mine periodic patterns in time series data are focused on discovering full-cycle periodic patterns from an entire time series. However, many useful partial periodic patterns are hidden in long and complex time series data. In this paper, we aim to discover the partial periodicity in local segments of the time series data. We introduce the notion of character density to partition the time series into variable-length fragments and to determine the lower bound of each character’s period. We propose a novel algorithm, called DPMiner, to find the dense periodic patterns in time series data. Experimental results on both synthetic and real-life datasets demonstrate that the proposed algorithm is effective and efficient to reveal interesting dense periodic patterns.

Year: 2011
OAI identifier: oai:CiteSeerX.psu:10.1.1.193.2615
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.comp.nus.edu.sg/%7E... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.