Skip to main content
Article thumbnail
Location of Repository

Quaternionic Manin symbols, Brandt matrices and Hilbert modular forms

By Lassina Dembélé


Abstract. In this paper, we propose a generalization of the algorithm we developed previously. Along the way, we also develop a theory of quaternionic M-symbols whose definition bears some resemblance to the classical M-symbols, except for their combinatorial nature. The theory gives a more efficient way to compute Hilbert modular forms over totally real number fields, especially quadratic fields, and we have illustrated it with several examples. Namely, we have computed all the newforms of prime levels of norm less than 100 over the quadratic fields Q ( √ 29) and Q ( √ 37), and whose Fourier coefficients are rational or are defined over a quadratic field

Year: 2011
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.