Location of Repository

Article electronically published on May 30, 2003 COMPUTATION OF STARK-TAMAGAWA UNITS

By W. Bley

Abstract

Abstract. Let K be a totally real number field and let l denote an odd prime number. We design an algorithm which computes strong numerical evidence for the validity of the “Equivariant Tamagawa Number Conjecture” for the Q[G]-equivariant motive h0 (Spec(L)), where L/K is a cyclic extension of degree l and group G. This conjecture is a very deep refinement of the classical analytic class number formula. In the course of the algorithm, we compute a set of special units which must be considered as a generalization of the (conjecturally existing) Stark units associated to first order vanishing Dirichlet L-functions. 1

Year: 2011
OAI identifier: oai:CiteSeerX.psu:10.1.1.192.4083
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.ams.org/journals/mc... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.