Location of Repository

Fast Algorithms for Coevolving Time Series Mining

By Lei Li and Supervised Christos Faloutsos

Abstract

Abstract — In this paper, we present fast algorithms on mining coevolving time series, with or with out missing values. Our algorithms could mine meaningful patterns effectively and efficiently. With those patterns, our algorithms can do forecasting, compression, and segmentation. Furthermore, we apply our algorithm to solve practical problems including occlusions in motion capture, and generating natural human motions by stitching low-effort motions. We also propose a parallel learning algorithm for LDS to fully utilize the power of multicore/multiprocessors, which will serve as corner stone of many applications and algorithms for time series. I

Year: 2011
OAI identifier: oai:CiteSeerX.psu:10.1.1.192.2041
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.cs.cmu.edu/%7Eleili... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.