Skip to main content
Article thumbnail
Location of Repository

A new approach to the giant component problem

By Svante Janson and Malwina J. Luczak


We study the largest component of a random (multi)graph on n vertices with a given degree sequence. We let n tend to infinity. Then, under some regularity conditions on the degree sequences, we give conditions on the asymptotic shape of the degree sequence that imply that with high probability all the components are small, and other conditions that imply that with high probability there is a giant component and the sizes of its vertex and edge sets satisfy a law of large numbers; under suitable assumptions these are the only two possibilities. In particular, we recover the results by Molloy and Reed on the size of the largest component in a random graph with a given degree sequence. Our method is based on the properties of empirical distributions of independent random variables, and leads to simple proofs

Topics: HA Statistics
Publisher: John Wiley and Sons
Year: 2009
DOI identifier: 10.1002/rsa.20231
OAI identifier:
Provided by: LSE Research Online
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www3.interscience.wiley... (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.