Skip to main content
Article thumbnail
Location of Repository

A Unified Framework for Max-Min and Min-Max Fairness with Applications

By Bozidar Radunovic and Jean-yves Le Boudec


Max-min fairness is widely used in various areas of networking. In every case where it is used, there is a proof of existence and one or several algorithms for computing the max-min fair allocation; in most, but not all cases, they are based on the notion of bottlenecks. In spite of this wide applicability, there are still examples, arising in the context of mobile or peer-to-peer networks, where the existing theories do not seem to apply directly. In this paper, we give a unifying treatment of max-min fairness, which encompasses all existing results in a simplifying framework, and extends its applicability to new examples. First, we observe that the existence of max-min fairness is actually a geometric property of the set of feasible allocations (uniqueness always holds). There exist sets on which max-min fairness does not exist, and we describe a large class of sets on which a max-min fair allocation does exist. This class contains the compact, convex sets of R , but not only. Second, we give a general purpose, centralized algorithm, called Max-min Programming, for computing the max-min fair allocation in all cases where it exists (whether the set of feasible allocations is in our class or not). Its complexity is of the order of N linear programming steps in R , in the case where the feasible set is defined by linear constraints. We show that, if the set of feasible allocations has the free-disposal property, then Max-min Programming degenerates to a simpler algorithm, called Water Filling, whose complexity is much less. Free disposal corresponds to the cases where a bottleneck argument can be made, and Water Filling is the general form of all previously known centralized algorithms for such cases. Our derivations are based on the relation betw..

Year: 2002
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.