Skip to main content
Article thumbnail
Location of Repository

Model-based learning for mobile robot navigation from the dynamical systems perspective

By Jun Tani


This paper discusses how a behavior-based robot can construct a “symbolic process” that accounts for its deliberative thinking processes using models of the environment. The paper focuses on two essential problems; one is the symbol grounding problem and the other is how the internal symbolic processes can be situated with respect to the behavioral contexts. We investigate these problems by applying a dynamical system’s approach to the robot navigation learning problem. Our formulation, based on a forward modeling scheme using recurrent neural learning, shows that the robot is capable of learning grammatical structure hidden in the geometry of the workspace from the local sensory inputs through its navigational experiences. Furthermore, the robot is capable of generating diverse action plans to reach an arbitrary goal using the acquired forward model which incorporates chaotic dynamics. The essential claim is that the internal symbolic process, being embedded in the attractor, is grounded since it is self-organized solely through interaction with the physical world. It is also shown that structural stability arises in the interaction between the neural dynamics and the environmental dynamics, which accounts for the situatedness of the internal symbolic process. The experimental results using a mobile robot, equipped with a local sensor consisting of a laser range finder, verify our claims. 1

Year: 1996
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • http://www.bdc.brain.riken.go.... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.