Skip to main content
Article thumbnail
Location of Repository

Imitation learning of Globally Stable Non-Linear Point-to-Point Robot Motions using Nonlinear Programming

By S. Mohammad Khansari-zadeh and Aude Billard


Abstract — This paper presents a methodology for learning arbitrary discrete motions from a set of demonstrations. We model a motion as a nonlinear autonomous (i.e. time-invariant) dynamical system, and define the sufficient conditions to make such a system globally asymptotically stable at the target. The convergence of all trajectories is ensured starting from any point in the operational space. We propose a learning method, called Stable Estimator of Dynamical Systems (SEDS), that estimates parameters of a Gaussian Mixture Model via an optimization problem under non-linear constraints. Being time-invariant and globally stable, the system is able to handle both temporal and spatial perturbations, while performing the motion as close to the demonstrations as possible. The method is evaluated through a set of robotic experiments. I

Year: 2010
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.