Skip to main content
Article thumbnail
Location of Repository

Almost optimal unrestricted fast johnson-lindenstrauss transform

By Nir Ailon and Edo Liberty

Abstract

The problems of random projections and sparse reconstruction have much in common and individually received much attention. Surprisingly, until now they progressed in parallel and remained mostly separate. Here, we employ new tools from probability in Banach spaces that were successfully used in the context of sparse reconstruction to advance on an open problem in random pojection. In particular, we generalize and use an intricate result by Rudelson and Vershynin for sparse reconstruction which uses Dudley’s theorem for bounding Gaussian processes. Our main result states that any set of N = exp ( Õ(n)) real vectors in n dimensional space can be linearly mapped to a space of dimension k = O(log N polylog(n)), while (1) preserving the pairwise distances among the vectors to within any constant distortion and (2) being able to apply the transformation in time O(n log n) on each vector. This improves on the best known N = exp ( Õ(n1/2)) achieved by Ailon and Liberty and N = exp ( Õ(n1/3)) by Ailon and Chazelle. The dependence in the distortion constant however is believed to be suboptimal and subject to further investigation. For constant distortion, this settles the open question posed by these authors up to a polylog(n) factor while considerably simplifying their constructions.

Year: 2003
OAI identifier: oai:CiteSeerX.psu:10.1.1.188.6117
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.cs.yale.edu/homes/e... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.