Skip to main content
Article thumbnail
Location of Repository

Modelling and Rendering Large Volume Data with Gaussian Radial Basis Functions

By Derek Juba and Amitabh Varshney


Implicit representations have the potential to represent large volumes succinctly. In this paper we present a multiresolution and progressive implicit representation of scalar volumetric data using anisotropic Gaussian radial basis functions (RBFs) defined over an octree. Our representation lends itself well to progressive level-of-detail representations. Our RBF encoding algorithm based on a Maximum Likelihood Estimation (MLE) calculation is non-iterative, scales in a O(nlogn) manner, and operates in a memory-friendly manner on very large datasets by processing small blocks at a time. We also present a GPU-based ray-casting algorithm for direct rendering from implicit volumes. Our GPU-based implicit volume rendering algorithm is accelerated by early-ray termination and empty-space skipping for implicit volumes and can render volumes encoded with 16 million RBFs at 1 to 3 frames/second. The octree hierarchy enables the GPU-based ray-casting algorithm to efficiently traverse using location codes and is also suitable for view-dependent level-of-detail-based rendering.

Year: 2007
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.