Skip to main content
Article thumbnail
Location of Repository

Evaluating Query Result Significance in Databases via Randomizations

By Markus Ojala, Gemma C. Garriga, Aristides Gionis and Heikki Mannila

Abstract

Many sorts of structured data are commonly stored in a multi-relational format of interrelated tables. Under this relational model, exploratory data analysis can be done by using relational queries. As an example, in the Internet Movie Database (IMDb) a query can be used to check whether the average rank of action movies is higher than the average rank of drama movies. We consider the problem of assessing whether the results returned by such a query are statistically significant or just a random artifact of the structure in the data. Our approach is based on randomizing the tables occurring in the queries and repeating the original query on the randomized tables. It turns out that there is no unique way of randomizing in multi-relational data. We propose several randomization techniques, study their properties, and show how to find out which queries or hypotheses about our data result in statistically significant information and which tables in the database convey most of the structure in the query. We give results on real and generated data and show how the significance of some queries vary between different randomizations.

Year: 2011
OAI identifier: oai:CiteSeerX.psu:10.1.1.187.3559
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.siam.org/proceeding... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.