Location of Repository

Discovering Groups of People in Google News ABSTRACT

By Dhiraj Joshi

Abstract

In this paper, we study the problem of content-based social network discovery among people who frequently appear in world news. Google news is used as the source of data. We describe a probabilistic framework for associating people with groups. A low-dimensional topic-based representation is first obtained for news stories via probabilistic latent semantic analysis (PLSA). This is followed by construction of semantic groups by clustering such representations. Unlike many existing social network analysis approaches, which discover groups based only on binary relations (e.g. co-occurrence of people in a news article), our model clusters people using their topic distribution, which introduces contextual information in the group formation process (e.g. some people belong to several groups depending on the specific subject). The model has been used to study evolution of people with respect to topics over time. We also illustrate the advantages of our approach over a simple co-occurrence-based social network extraction method. Categories and Subject Descriptors: H.3.1 [Content Analysis and Indexing]: abstracting methods, linguistic processing

Topics: General Terms, Algorithms, Experimentation, Human Factors. Keywords, Text mining, social network analysis, probabilistic latent semantic
Year: 2011
OAI identifier: oai:CiteSeerX.psu:10.1.1.187.2724
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://publications.idiap.ch/d... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.