Location of Repository

Search k nearest neighbors on air

By Baihua Zheng, Wang-chien Lee and Dik Lun Lee

Abstract

Abstract. While the K-Nearest-Neighbor (KNN) problem is well studied in the traditional wired, disk-based client-server environment, it has not been tackled in a wireless broadcast environment. In this paper, the problem of organizing location dependent data and answering KNN queries on air are investigated. The linear property of wireless broadcast media and power conserving requirement of mobile devices make this problem particularly interesting and challenging. An efficient data organization, called sorted list, and the corresponding search algorithm are proposed and compared with the well-known spatial index, R-Tree. In addition, we develop an approximate search scope to guide the search at the very beginning of the search process and a learning algorithm to adapt the search scope during the search to improve energy and access efficiency. Simulation based performance evaluation is conducted to compare sorted list and R-Tree. The results show that the utilization of search scope and learning algorithm improves search efficiency of both index mechanisms significantly. While R-Tree is more power efficient when a large number of nearest neighbors is requested, the sorted list has better access efficiency and less power consumption when the number of nearest neighbors is small

Topics: KNN, location-dependent search, wireless broadcast, index structure
Year: 2003
OAI identifier: oai:CiteSeerX.psu:10.1.1.186.6881
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.cse.psu.edu/%7Ewlee... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.