Skip to main content
Article thumbnail
Location of Repository

Structured Parameter Elicitation

By Li Ling Ko, David Hsu, Wee Sun Lee and Sylvie C. W. Ong


The behavior of a complex system often depends on parameters whose values are unknown in advance. To operate effectively, an autonomous agent must actively gather information on the parameter values while progressing towards its goal. We call this problem parameter elicitation. Partially observable Markov decision processes (POMDPs) provide a principled framework for such uncertainty planning tasks, but they suffer from high computational complexity. However, POMDPs for parameter elicitation often possess special structural properties, specifically, factorization and symmetry. This work identifies these properties and exploits them for efficient solution through a factored belief representation. The experimental results show that our new POMDP solvers outperform SARSOP and MOMDP, two of the fastest general-purpose POMDP solvers available, and can handle significantly larger problems

Year: 2011
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.