Skip to main content
Article thumbnail
Location of Repository

Node Level Primitives for Exact Inference using GPGPU

By Hyeran Jeon, Yinglong Xia and Viktor K. Prasanna


Abstract—Exact inference is a key problem in exploring probabilistic graphical models in a variety of multimedia applications. In performing exact inference, a series of computations known as node level primitives are performed between the potential tables in cliques and separators of a given junction tree. The computation complexity increases dramatically with the clique width and the number of states of random variables. In this paper, we propose a conflict-free data layout for potential tables on GPU. We map the algorithms for the primitives to the GPU architecture based on the proposed data layout. Several optimization techniques are presented to improve the performance. We implemented the proposed method on NVIDIA Tesla C870. Experimental results exhibit scalability over a wide range and show superior performance compared with state-of-the-art multicore CPUs such as Intel Xeon and AMD Opteron. Keywords-Node level primitives,GPGPU,Exact inference I

Year: 2011
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.