Skip to main content
Article thumbnail
Location of Repository

Boosting the Scalability of Botnet Detection Using Adaptive Traffic Sampling

By Junjie Zhang, Xiapu Luo, Roberto Perdisci, Guofei Gu, Wenke Lee and Nick Feamster


Botnets pose a serious threat to the health of the Internet. Most current network-based botnet detection systems require deep packet inspection (DPI) to detect bots. Because DPI is a computational costly process, such detection systems cannot handle large volumes of traffic typical of large enterprise and ISP networks. In this paper we propose a system that aims to efficiently and effectively identify a small number of suspicious hosts that are likely bots. Their traffic can then be forwarded to DPI-based botnet detection systems for fine-grained inspection and accurate botnet detection. By using a novel adaptive packet sampling algorithm and a scalable spatial-temporal flow correlation approach, our system is able to substantially reduce the volume of network traffic that goes through DPI, thereby boosting the scalability of existing botnet detection systems. We implemented a proof-of-concept version of our system, and evaluated it using real-world legitimate and botnet-related network traces. Our experimental results are very promising and suggest that our approach can enable the deployment of botnet-detection systems in large, high-speed networks

Topics: Categories and Subject Descriptors C.2.0 [Computer-Communication Network, Security and Protection General Terms Security, Algorithms Keywords Botnet, Adaptive Sampling, Intrusion Detection, Network Security
Year: 2011
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.