Learning from Demonstration: Communication and Policy Generation

Abstract

Abstract Learning from demonstration utilizes human expertise to program a robot. We believe this approach to robot programming will facilitate the development and deployment of general purpose personal robots that can adapt to specific user preferences. Demonstrations can potentially take place across a wide variety of environmental conditions. In this paper we address how learning from demonstration can be affected by various communication alterations. Furthermore, we we detail a Bayesian approach to generating task policies from demonstration data.

Similar works

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.